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On a sunny morning in New York, Tom, a blue-gray cat carrying a briefcase, arrives at his office in the World Trade Center. As he settles in, his computer suddenly shuts down – Jerry, a
mischievous brown mouse, has chewed the cable. A chase ensues, ending with Tom crashing into the wall as Jerry escapes into his mousehole. Determined, Tom bursts through an office
door, accidentally interrupting a meeting led by Spike, an irritated bulldog, who angrily sends him away. Safe in his cozy mousehole, Jerry laughs at the chaos.

Jerry happily eats cheese in a tidy kitchen until Tom playfully takes it away, teasing him. Annoyed, Jerry packs his belongings and leaves home, dragging a small suitcase behind him. Later,
Tom notices Jerry's absence, feels sad, and follows Jerry’s tiny footprints all the way to San Francisco. Jerry sits disheartened in an alleyway, where Tom finds him, gently offering cheese as
an apology. Jerry forgives Tom, accepts the cheese, and the two return home together, their friendship restored.

Figure 1. TTT layers enable a pre-trained Diffusion Transformer to generate one-minute videos from text storyboards. We use Tom and
Jerry cartoons as a proof of concept. The videos tell complex stories with coherent scenes composed of dynamic motion. Every video is
produced directly by the model in a single shot, without editing, stitching, or post-processing. Every story is newly created.

Abstract

Transformers today still struggle to generate one-minute
videos because self-attention layers are inefficient for long
context. Alternatives such as Mamba layers struggle with
complex multi-scene stories because their hidden states are
less expressive. We experiment with Test-Time Training
(TTT) layers, whose hidden states themselves can be neu-
ral networks, therefore more expressive. Adding TTT lay-
ers into a pre-trained Transformer enables it to generate
one-minute videos from text storyboards. For proof of con-
cept, we curate a dataset based on Tom and Jerry cartoons.
Compared to baselines such as Mamba 2, Gated DeltaNet,
and sliding-window attention layers, TTT layers generate
much more coherent videos that tell complex stories, lead-
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ing by 34 Elo points in a human evaluation of 100 videos
per method. Although promising, results still contain arti-
facts, likely due to the limited capability of the pre-trained
5B model. The efficiency of our implementation can also
be improved. We have only experimented with one-minute
videos due to resource constraints, but the approach can be
extended to longer videos and more complex stories.

Sample videos, code and annotations are available at:
https://test-time-training.github.io/video-dit

1. Introduction
Despite the remarkable progress in visual and physical real-
ism, state-of-the-art video Transformers are still generating
mostly short clips of single scenes without complex stories.
At the time of writing (March 2025), the maximum length
of public APIs for video generation is 20 seconds for Sora
(OpenAI), 16 seconds for MovieGen (Meta), 10 for Ray 2
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Figure 2. All RNN layers can be expressed as a hidden state that transitions according to an update rule. The key idea in [43] is to make
the hidden state itself a model f with weights W , and the update rule a gradient step on the self-supervised loss ℓ. Therefore, updating
the hidden state on a test sequence is equivalent to training the model f at test time. This process, known as Test-Time Training (TTT), is
programmed into TTT layers. Figure and caption taken from [43].

(Luma), and 8 for Veo 2 (Google). None of these APIs can
autonomously generate complex multi-scene stories.

A fundamental challenge behind these technical limi-
tations is long context, because the cost of self-attention
layers in Transformers increases quadratically with context
length. This challenge is especially acute for video gener-
ation with dynamic motion, whose context cannot be eas-
ily compressed by a tokenizer. Using a standard tokenizer,
each of our one-minute videos requires over 300k tokens in
context. With self-attention, generating a one-minute video
would have taken 11× longer than generating 20 videos of
3 seconds each, and training would have taken 12× longer.

To address this challenge, recent work on video gener-
ation has investigated RNN layers as an efficient alterna-
tive to self-attention, because their cost increases linearly
with context length [47]. Modern RNN layers, especially
variants of linear attention [23, 37] such as Mamba [8, 12]
and DeltaNet [35, 53], have shown impressive results for
natural language tasks. However, we have yet to see long
videos with complex stories or dynamic motion generated
by RNNs. Videos (link) in [47] are high resolution and
one-minute long, but contain only single scenes and slow
motion, let alone complex stories.

We believe that these RNN layers generate less complex
videos because their hidden states are less expressive. RNN
layers can only store past tokens into a hidden state of fixed
size, which is only a matrix for linear attention variants such
as Mamba and DeltaNet. It is inherently challenging to
compress hundreds of thousands of vectors into a matrix
with only thousands in rank. As a consequence, these RNN
layers struggle to remember the deep relationships between
distant tokens.

We experiment with an alternative class of RNN layers
whose hidden states themselves can be neural networks.
Specifically, we use two-layer MLPs with 2× more hid-
den cells and richer nonlinearities than the linear (matrix)
hidden states in linear attention variants. Since the neural
network hidden states are updated by training even on test
sequences, these new layers are called Test-Time Training
(TTT) layers [43].

We start from a pre-trained Diffusion Transformer
(CogVideo-X 5B [19]) that could only generate 3-second
short clips at 16 fps (or 6 seconds at 8 fps). Then, we add
TTT layers initialized from scratch and fine-tune this model
to generate one-minute videos from text storyboards. We
limit the self-attention layers to 3-second segments so their
cost stays manageable. With only preliminary systems op-
timization, our training run takes the equivalent of 50 hours
on 256 H100s.

We curate a text-to-video dataset based on ≈ 7 hours of
Tom and Jerry cartoons with human-annotated storyboards.
We intentionally limit our scope to this specific domain for
fast research iteration. As a proof-of-concept, our dataset
emphasizes complex, multi-scene, and long-range stories
with dynamic motion, where progress is still needed; it
has less emphasis on visual and physical realism, where re-
markable progress has already been made. We believe that
improvements in long-context capabilities for this specific
domain will transfer to general-purpose video generation.

Compared to strong baselines such as Mamba 2 [8],
Gated DeltaNet [53], and sliding-window attention layers,
TTT layers generate much more coherent videos that tell
complex stories with dynamic motion, leading by 34 Elo
points in a human evaluation of 100 videos per method. For
context, GPT-4o scores 29 Elo points over GPT-4 Turbo in
LMSys Chatbot Arena [6].

Sample videos, code and annotations are available at:
https://test-time-training.github.io/video-dit

2. Test-Time Training Layers

Following standard practice [44, 54], each video is pre-
processed into a sequence of T tokens, where T is deter-
mined by its duration and resolution. This section reviews
Test-Time Training (TTT) layers for general sequence mod-
eling, using some of the exposition in Section 2 of [43]. We
first discuss how to process general input sequences in a
causal manner (chronological order). Section 3 discusses
how to use RNN layers in a non-causal backbone by invok-
ing them in opposite directions.
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2.1. TTT as Updating a Hidden State
All RNN layers compress historical context in a hidden state
of fixed size. This compression has two consequences. On
one hand, mapping an input token xt to output token zt is
efficient, because both the update rule and output rule take
constant time per token. On the other hand, an RNN layer’s
ability to remember long context is limited by the amount
of information its hidden state can store. The goal of [43]
is to design RNN layers with expressive hidden states that
can compress massive context. As an inspiration, they ob-
serve that self-supervised learning can compress a massive
training set into the weights of a machine learning model.

The key idea in [43] is to use self-supervised learning
to compress the historical context x1, . . . , xt into a hidden
state Wt, by making the context an unlabeled dataset and
the hidden state the weights of a machine learning model f .
The update rule, illustrated in Figure 2, is a step of gradient
descent on some self-supervised loss ℓ:

Wt = Wt−1 − η∇ℓ(Wt−1;xt), (1)

with learning rate η. Intuitively, the output token is just the
prediction on xt, made by f with the updated weights Wt:

zt = f(xt;Wt). (2)

One choice of ℓ is reconstructing xt itself. To make the
learning problem nontrivial, one can first process xt into a
corrupted input x̃t (see Subsection 2.2), then optimize:

ℓ(W ;xt) = ∥f(x̃t;W )− xt∥2. (3)

Similar to denoising autoencoders [46], f needs to discover
the correlations between dimensions of xt in order to recon-
struct it from partial information x̃t.

As with other RNN layers and self-attention, this algo-
rithm that maps an input sequence x1, . . . , xT to output se-
quence z1, . . . , zT can be programmed into the forward pass
of a sequence modeling layer. Even at test time, the layer
still trains a different sequence of weights W1, . . . ,WT

for every input sequence. Therefore, it is called Test-Time
Training (TTT) layer.

Conceptually, calling backward on ∇ℓ means taking gra-
dients of gradients – a well-explored technique in meta-
learning. TTT layers have the same interface as RNN layers
and self-attention, therefore can be replaced in any larger
network architecture. [43] refers to training the larger net-
work as the outer loop, and training W within each TTT
layer as the inner loop.

2.2. Learning a Self-Supervised Task for TTT
Arguably, the most important part of TTT is the self-
supervised task specified by ℓ. Instead of handcrafting a
self-supervised task from human priors, [43] takes a more

end-to-end approach, learning it as part of the outer loop.
Starting from the naive reconstruction task in Equation 3,
they use a low-rank projection x̃t = θKxt, where θK is a
matrix that is learnable in the outer loop.

Moreover, perhaps not all the information in xt is worth
remembering, so the reconstruction label can also be a low-
rank projection θV xt instead of xt. In summary, the self-
supervised loss in [43] is:

ℓ(W ;xt) = ∥f (θKxt;W )− θV xt∥2. (4)

Lastly, since θKxt has fewer dimensions than xt, [43] can
no longer use the output rule in Equation 2. So they make
another projection θQxt, and change the output rule to:

zt = f (θQxt;Wt) . (5)

Note that in the inner loop, only W is optimized, therefore
written as an argument of ℓ; the θs are “hyper-parameters”
of this inner-loop loss function. θK , θV , θQ are optimized
in the outer loop, analogous to the Query, Key, and Value
parameters of self-attention.

2.3. TTT-MLP Instantiation
Following [43], we instantiate the inner-loop model f as a
wrapper around f MLP: a two-layer MLP similar to those in
Transformers. Specifically, the hidden dimension is 4× the
input dimension, followed by a GELU activation [16]. For
better stability during TTT, f always contains a Layer Norm
and residual connection. That is,

f(x) = x+ LN(f MLP(x)).

A TTT layer with this f is called TTT-MLP, which is the
default instantiation throughout this paper. In Section 4 we
also instantiate TTT-Linear (the f above wrapping around a
linear model) as a baseline.

3. Approach
At a high level, our approach simply adds TTT layers to a
pre-trained Diffusion Transformer and fine-tunes it on long
videos with text annotations. At a practical level, making
this approach work involves many design choices.

3.1. Architecture

Pre-trained Diffusion Transformer. Our approach of
adding TTT layers then fine-tuning can, in principle, work
with any backbone architecture. We choose Diffusion
Transformers [32] for our initial demonstration because it
is the most popular architecture for video generation. Since
the cost of pre-training a Diffusion Transformer on videos
is prohibitive, we start from a pre-trained checkpoint called
CogVideo-X 5B [19].
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Figure 3. Overview of our approach. Left: Our modified architecture adds a TTT layer with a learnable gate after each attention layer. See
Subsection 3.1. Right: Our overall pipeline creates input sequences composed of 3-second segments. This structure enables us to apply
self-attention layers locally over segments and TTT layers globally over the entire sequence. See Subsection 3.2.

Gating. Given an input sequence X = (x1, . . . , xT ) where
each token xt ∈ Rd, a TTT layer produces an output se-
quence Z = (z1, . . . , zT ) = TTT(X). Each zt ∈ Rd fol-
lows the recurrence described by Equations 1, 4 and 5 in
Section 2. Naively inserting TTT layers into a pre-trained
network would dramatically worsen its predictions at the
beginning of fine-tuning, when the TTT layers are randomly
initialized. To avoid this degradation, we gate TTT with a
learned vector α ∈ Rd following standard practice [1]:

gate(TTT, X;α) = tanh(α)⊗ TTT(X) +X, (6)

where tanh(α) ∈ (−1, 1)d is multiplied element-wise with
each zt in Z = TTT(X). We initialize all values in α to
0.1, so the values in tanh(α) are close to 0 (≈ 0.1) at the
beginning of fine-tuning. This initialization of α allows TTT
to still contribute to gate(TTT, X;α) without significantly
overwriting X .
Bi-direction. Diffusion models, including CogVideo-X,
are non-causal, meaning that an output token zt can con-
dition on all of x1, . . . , xT instead of only the past tokens
x1, . . . , xt. To use TTT layers in a non-causal manner,
we apply a standard trick called bi-direction [30]. Given
an operator rev(X) = (xT , . . . , x1) that reverses X =
(x1, . . . , xT ) in time, we define

TTT′(X) = rev(TTT(rev(X))). (7)

Since rev is applied twice, TTT′(X) is still in chronological
order. But the TTT layer inside it now scans through X in
reverse-chronological order.
Modified architecture. Standard Transformers, includ-
ing CogVideo-X, contain interleaving sequence modeling
blocks and MLP blocks. Specifically, a standard sequence
modeling block takes an input sequence X and produces

X ′ = self attn(LN(X)) (8)
Y = X ′ +X, (9)

where LN is Layer Norm1 and X ′+X forms a residual con-
nection. We only modify the sequence modeling blocks,
leaving everything else in the architecture unchanged. Each
modified block, illustrated in the left panel of Figure 3, con-
tinues from the X ′ in Equation 8 and produces

Z = gate(TTT, X ′;α), (10)
Z ′ = gate(TTT′, Z;β), (11)
Y = Z ′ +X. (12)

Note that TTT′ only makes another call to TTT, so they share
the same underlying parameters θK , θV , θQ. But for gating,
Equation 10 and 11 use different parameters α and β.

3.2. Overall Pipeline
In this subsection, we discuss how to create the input se-
quence of tokens to our architecture and how each sequence
is processed in segments. Except for the first two text for-
mats in the upcoming discussion, everything applies to both
fine-tuning and inference. Our pipeline is illustrated in the
right panel of Figure 3.
Scenes and segments. We structure our videos to contain
multiple scenes,2 and each scene contains one or more 3-
second segments. We use a 3-second segment as the atomic
unit of text-to-video pairing for three reasons:
• The maximum length of generation for the original pre-

trained CogVideo-X is 3 seconds.
• The length of most scenes in the Tom and Jerry episodes

is at least 3 seconds.
• Building a dataset with multiple stages (Subsection 3.3)

is most convenient given 3-second segments.
Formats of text prompts. At inference time, a user can
write the text prompt for a long video in any of the three

1Diffusion Transformers such as CogVideo-X use adaptive LN [32].
2A scene is loosely defined as “a part of a film in which the action

happens in one place or is of one particular type.” (Oxford Dictionary)
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formats listed below in the order of increasing detail. See
Figure 8 in Appendix for examples of each format.
• Format 1: A short summary of the plot in 5-8 sentences.

Some of the examples are shown in Figure 1.
• Format 2: A more detailed plot in roughly 20 sentences,

with each sentence roughly corresponding to a 3-second
segment. Sentences can be labeled as belonging to certain
scenes or groups of scenes, but these labels will be treated
only as suggestions.

• Format 3: A storyboard. Each 3-second segment is
described by a paragraph of 3-5 sentences, containing
details such as background colors and camera move-
ments. Groups of one or more paragraphs are strictly en-
forced as belonging to certain scenes with the keywords
<scene start> and <scene end>.

The actual input to our text tokenizer is always in Format 3
during both fine-tuning and inference. Conversion between
the formats is performed by Claude 3.7 Sonnet in the order
of 1 → 2 → 3.3 For fine-tuning, our human annotations are
already in Format 3, as discussed in Subsection 3.3.
From text to sequences. After the original CogVideo-X to-
kenizes the input text for each video, it concatenates the text
tokens with noisy video tokens to form the input sequence
to the Transformer. To generate a long video, we apply the
same procedure independently for each 3-second segment.
Specifically, given a storyboard in Format 3 with n para-
graphs, we first produce n sequence segments, each con-
taining text tokens extracted from the corresponding para-
graph followed by video tokens. Then we concatenate all
n sequence segments together to form the input sequence,
which now has interleaved text and video tokens.
Local attention, global TTT. CogVideo-X uses self-
attention layers to process the entire input sequence globally
for each video of maximum length 3 seconds, but global
attention becomes inefficient for long videos. To avoid in-
creasing the context length of self-attention layers, we make
them local to each 3-second segment, attending to each of
the n sequence segments independently.4 The TTT layers
process the entire input sequence globally because they are
efficient in long context.

3.3. Fine-Tuning Recipe and Dataset

Multi-stage context extension. Following standard prac-
tice for LLMs [51], we extend the context length of our
modified architecture to one minute in five stages. First,
we fine-tune the entire pre-trained model on 3-second seg-
ments of Tom and Jerry to adapt it to this domain. New
parameters (specifically those in TTT layers and gates) are

3We observe that converting from Format 1 directly to Format 3 results
in worse ability to follow the style of the human annotations in Format 3
in the fine-tuning dataset.

4As an artifact of our pre-processing step, the sequence segments ac-
tually have an overlap of 1 latent frame (1350 tokens).

assigned a higher learning rate during this stage. Over the
next four stages, we fine-tune on videos of 9, 18, 30, and
eventually 63 seconds. To avoid forgetting too much of the
world knowledge from pre-training, we only fine-tune the
TTT layers, gates, and self-attention layers, using a lower
learning rate during these four stages. See Appendix A for
the detailed recipe.
Super-resolution on original videos. We start with 81
episodes of Tom and Jerry released between 1940 and 1948.
Each episode is about 5 minutes, adding up to about 7 hours
for all episodes. The original videos vary in resolution,
which is uniformly poor by modern standards. We run a
video super-resolution model [49] on the original videos,
producing visually enhanced videos with shared resolution
of 720× 480 for our dataset.
Multi-stage dataset. Following the structure discussed in
Subsection 3.2, we first have human annotators break down
each episode into scenes, then extract 3-second segments
from each scene. Next we have human annotators write
a detailed paragraph for each 3-second segment.5 Stage 1
fine-tunes directly on these segments. To create data for the
last four stages, we concatenate contiguous 3-second seg-
ments into videos of 9, 18, 30 and 63 seconds together with
their text annotations. Scene boundaries are marked by the
same keywords in Subsection 3.2. As a result, annotations
for all training videos are in Format 3.

3.4. Parallelization for Non-Causal Sequences
The update rule discussed in Section 2 cannot be naively
parallelized across tokens in a sequence, since computing
Wt requires ∇ℓ(Wt−1;xt), which in turn requires Wt−1.
To enable parallelization, we update W on b tokens at a
time, which [43] calls an inner-loop mini-batch. Through-
out this paper, we set b = 64.

Concretely, for mini-batch i = 1, . . . , T/b (assuming T
is an integer multiple of b),

Wib = W(i−1)b −
η

b

ib∑
t=(i−1)b+1

∇ℓ
(
W(i−1)b;xt

)
. (13)

Because the sequence is non-causal, we then use Wib to
produce the output tokens for all timesteps in mini-batch i:

zt = f(Wib;xt), for t = (i− 1)b+ 1, . . . , ib. (14)

Note that W(i−1)b+1, . . . ,Wib−1 are no longer needed.
After this modification, f can process an (inner-loop)

mini-batch of tokens in parallel, similar to how a regular
MLP processes an (outer-loop) mini-batch of training data.
As a side benefit, we observe that averaging gradients across
tokens reduces variance and stabilizes each update to W .

5Each paragraph includes 1–2 sentences describing the background,
1–2 sentences describing the characters, and 2 sentences describing actions
and camera movements. On average, each paragraph contains 98 words,
which corresponds to 132 tokens.
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Figure 4. On-chip Tensor Parallel, discussed in Subsection 3.5. Left: To reduce the memory required on each SM for TTT-MLP, we shard
the hidden state W (1) and W (2) across SMs, transferring them between HBM and SMEM only during initial loading and final output.
Right: We update the hidden state entirely on-chip and use the DSMEM feature on the NVIDIA Hopper GPU architecture to AllReduce
intermediate activations among SMs.

3.5. On-Chip Tensor Parallel

Implementing TTT-MLP efficiently for GPUs requires spe-
cial designs to take advantage of their memory hierarchy. A
chip on a GPU is called a Streaming Multiprocessor (SM),
analogous to a core on a CPU. All SMs on a GPU share
a relatively slow but large global memory called HBM,
then each SM has a fast but small on-chip memory called
SMEM. Frequent data transfers between the SMEMs and
HBM on a GPU can significantly hurt overall efficiency.

Efficient implementations of Mamba and self-attention
layers (Flash Attention [9]) use kernel fusion to minimize
this kind of transfer. The high-level idea of these implemen-
tations is to load inputs and initial states into each SMEM,
perform computations entirely on-chip, and write only the
final outputs back to HBM. However, the hidden state for
TTT-MLP, namely the weights W (1) and W (2) of the two-
layer MLP f , is too large to be stored in the SMEM of a
single SM (when combined with inputs and activations).

To reduce the memory required on each SM, we use Ten-
sor Parallelism [39] to shard W (1) and W (2) across SMs, as
shown in Figure 4. Similar to how large MLP layers can
be sharded and trained across the HBMs of multiple GPUs,
we apply the same idea now across the SMEMs of multiple
SMs, treating each SM as the analogy of a GPU. We use the
DSMEM feature on the NVIDIA Hopper GPU architecture
to implement AllReduce among SMs. More details of our
kernel are discussed in Appendix B.

Our implementation significantly improves efficiency,
since hidden states and activations are now read from and
written to HBMs only during initial loading and final out-
put. As a general principle, if a model architecture f can
be sharded with standard Tensor Parallelism across GPUs,
then the same sharding strategy can be applied across SMs
when f is used as the hidden state.

4. Evaluation
We perform human evaluation on a multi-axis benchmark
for TTT-MLP and five baselines, all with linear complexity:
local attention, TTT-Linear, Mamba 2, Gated DeltaNet, and
sliding window attention layers.

4.1. Baselines
Except for local attention, all baselines are added to the
same pre-trained CogVideo-X 5B using the approach in
Subection 3.1; their modified architectures all have 7.2B
parameters. All baselines use the same fine-tuning recipe in
Subsection 3.3 and Appendix A. Next we discuss the base-
lines in detail.
• Local attention: No modification to the original archi-

tecture, which performs self-attention on each 3-second
segment independently.

• TTT-Linear [43]: A TTT layer that instantiates f(x) =
x+ LN(f Linear(x)), where f Linear is a linear model.

• Mamba 2 [8]: A modern RNN layer with a matrix hidden
state, which is ≈ 4× larger than the hidden state in TTT-
Linear but ≈ 2× smaller than that in TTT-MLP.

• Gated DeltaNet [53]: An extension of DeltaNet [52] and
Mamba 2 with an improved update rule.

• Sliding-window attention [3]: Self-attention with a fixed
window of 8192 tokens (about 1.5 seconds of video).

4.2. Evaluation Axes and Protocol
From the six evaluation axes in MovieGen [44], we adopt
the four relevant to our domain for human evaluation.6

6Out of the six axes in MovieGen, we omit “realness” which does not
apply to cartoons. We also omit “motion completeness” which “measures
whether the output video contains enough motion”, because all videos in
our domain have highly dynamic motion. We adapt “frame consistency”
to “temporal consistency” to also include consistency across scenes.
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TTT-MLP preserves temporal consistency over scene changes and across angles, producing smooth, high-quality actions.

Sliding-window attention alters the kitchen environment, changes the house color, and duplicates Jerry stealing the pie.

Gated DeltaNet lacks temporal consistency across different angles of Tom but maintains the kitchen environment in later frames.

Mamba 2 distorts Tom's appearance as he growls and chases Jerry but maintains a similar kitchen environment throughout the video.

Tom is happily eating an apple pie at the kitchen table. Jerry looks longingly wishing he had some. Jerry goes outside the front door of the house and
rings the doorbell. While Tom comes to open the door, Jerry runs around the back to the kitchen. Jerry steals Tom's apple pie. Jerry runs to his mouse
hole carrying the pie, while Tom is chasing him. Just as Tom is about to catch Jerry, he makes it through the mouse hole and Tom slams into the wall.

Figure 5. Video frames comparing TTT-MLP against Gated DeltaNet and sliding-window attention, the leading baselines in our human evaluation. TTT-MLP demonstrates better
scene consistency by preserving details across transitions and better motion naturalness by accurately depicting complex actions.
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Text following Motion naturalness Aesthetics Temporal consistency Average

Mamba 2 985 976 963 988 978

Gated DeltaNet 983 984 993 1004 991

Sliding window 1016 1000 1006 975 999

TTT-MLP 1014 1039 1037 1042 1033

Table 1. Human evaluation results for one-minute videos. TTT-MLP improves over the second best method by 34 Elo points on average.
Axes with the most improvements are scene consistency (+38) and motion smoothness (+39). For context, GPT-4 scores 46 Elo points
over GPT-3.5 Turbo, and GPT-4o scores 29 over GPT-4 Turbo in Chatbot Arena [6].
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Figure 6. For 63-second videos, inference
with full attention (over 300k tokens) would
have taken 11× longer than local attention,
and training 12× longer, as discussed in Sec-
tion 1. TTT-MLP takes 2.5× and 3.8× re-
spectively – significantly more efficient than
full attention, but still less efficient than, for
example, Gated DeltaNet, which takes 1.8×
longer than local attention in both inference
and training.

• Text following: “aligment with the provided prompt.”
• Motion naturalness: “natural limb movements, facial

expressions, and adherence to physical laws. Motion that
appears unnatural or uncanny will be penalized.”

• Aesthetics: “interesting and compelling content, lighting,
color, and camera effects.”

• Temporal consistency: both inside and across scenes.

The quoted descriptions are from MovieGen [44].
Our evaluation is based on pairwise preferences in blind

comparisons, because directly rating long videos or rank-
ing many of them at once is challenging. Specifically, an
evaluator is given a random axis from the four above and a
random pair of videos sharing the same plot, then asked to
indicate the better video for that axis. To collect the pool
of videos, we first sample 100 plots using Claude 3.7 Son-
net (in Format 1 → 2 → 3 as discussed in Subsection 3.2),
then generate one video per method per plot. The methods
generating the videos are always unknown to the evaluators.

Our evaluators were recruited on prolific.com with the
filters: living in the U.S., English as a first language, aged
18 to 35 years, with at least 100 previous submissions and
an approval rate of at least 98%. The demographics of our
evaluators, disclosed on the website, are as follows.
• Gender: 50.78% male, 47.66% female, 1.56% other.
• Ethnicity: 57.03% White, 23.44% Black, 10.94% Mixed,

5.47% Asian, and 3.12% other.
Based on this information, we believe that our evaluators

constitute a representative sample of the U.S. population.

4.3. Results

We aggregate the pairwise preferences using the Elo system
in LMSys Chatbot Arena [6]. The Elo scores are shown in
Table 1.

TTT-MLP improves over the second-best method by 34
Elo points on average. For context, GPT-4 scores 46 Elo
points over GPT-3.5 Turbo (1163 vs. 1117), and GPT-4o
scores 29 over GPT-4 Turbo (1285 vs. 1256) in LMSys
Chatbot Arena [6], so our improvement by 34 is practically
meaningful.7 Figure 5 compares frames of sample videos
generated by TTT-MLP and the baselines. The videos illus-
trated in Figure 5 can be accessed on the project website:
https://test-time-training.github.io/video-dit

18-second elimination round. Note that local attention and
TTT-Linear do not appear in Table 1. To avoid the much
higher cost of evaluating longer videos on every method,
we first conducted an elimination round using 18-second
videos following the same procedure discussed in Subsec-
tion 4.2. This round eliminated local attention, which per-
formed worst, and also TTT-Linear, which performed worse
than TTT-MLP. Results of the elimination round are shown
in Table 3 in the Appendix.

7https://lmarena.ai/, accessed on March 20, 2025. The mod-
els considered are GPT-4o-2024-05-13, GPT-4-Turbo-2024-04-09, GPT-
4-0613, and GPT-3.5-Turbo-0613.
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Temporal consistency: The boxes morph between 3-second segments of the same scene.

Aesthetics: The lighting in the kitchen becomes dramatically brighter as Tom turns around.

Motion naturalness: The cheese hovers in mid-air rather than falling naturally to the ground.

Figure 7. Artifacts in videos generated by TTT-MLP. Temporal consistency: Objects sometimes morph at the boundaries of 3-second
segments, potentially because the diffusion model samples from different modes across the segments. Motion naturalness: Objects
sometimes float unnaturally because gravitational effects are not properly modeled. Aesthetics: Lighting changes do not consistently align
with actions unless explicitly prompted. Complex camera movements, such as parallax, are sometimes depicted inaccurately.

4.4. Limitations

Short context. For the 18-second elimination round dis-
cussed above, Gated DeltaNet performs the best on aver-
age, leading Mamba 2 by 27 Elo points and TTT-MLP by
28 (see Table 3 in the Appendix). For 18-second videos,
the context length is roughly 100k tokens. This evaluation
shows the scenario where RNN layers with linear (matrix)
hidden states, such as Gated DeltaNet and Mamba 2, are
still the most effective. Moreover, evaluation results for
both 18 and 63-second videos indicate that Gated DeltaNet
improves meaningfully on Mamba 2.

Wall-clock time. Even after applying our improvements
in Subsection 3.4 and 3.5, the efficiency of TTT-MLP is
still worse than Gated DeltaNet and Mamba 2. This limita-
tion is highlighted in Figure 6, where inference and training
with TTT-MLP are 1.4× and 2.1× slower than with Gated
DeltaNet, for example. Section 6 discusses two potential
improvements of our TTT-MLP kernel for better efficiency.
Note that training efficiency is not a significant concern in
our application because the RNN layers are integrated after
pre-training, which constitutes most of the overall training
budget. Training efficiency of the RNN layers is only rele-
vant during fine-tuning, which is a small part of the budget
to begin with. In contrast, inference efficiency is much more
meaningful.

Video artifacts. The generated 63-second videos demon-
strate clear potential as a proof of concept, but still con-
tain notable artifacts, especially in motion naturalness and
aesthetics. Figure 7 illustrates examples of artifacts corre-
sponding to three of our evaluation axes. We observe that
videos with these kinds of artifacts are not particular to
TTT-MLP, but common among all methods. The artifacts
might have been a consequence of the limited capability of
the pre-trained CogVideo-X 5B model. For example, videos
(link) generated by the original CogVideo-X also seem to
have limited motion naturalness and aesthetics.

5. Related Work

Modern RNN layers, especially linear attention vari-
ants [23, 37], such as Mamba [8, 12] and DeltaNet [35, 52],
have demonstrated impressive performance in natural lan-
guage tasks. Inspired by their success and ideas from Fast
Weight Programmers [7, 21, 24, 36], [43] proposes scalable
and practical ways to make the hidden states large and non-
linear, therefore more expressive. Recent work [2] develops
even larger and more nonlinear hidden states, and updates
them with more sophisticated optimization techniques. The
related work section in [43] contains a detailed discussion
of inspirations for TTT layers. [48] gives a good overview
of recent developments in RNN layers.
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Long video modeling. Some early work [40] generates
long videos by training GAN [11, 22] to predict the next
frame based on the current frame and the motion vector.
Generation quality has improved significantly due to re-
cent progress in auto-regression (AR) and diffusion-based
approaches [13, 25, 44, 54]. TATS [10] proposes the slid-
ing window attention on the Transformer to generate videos
longer than the training length. Phenaki [45] works in a
similar auto-regressive way, but each frame is generated by
MaskGIT [4]. Pre-trained diffusion models can be extended
to generate longer videos by using cascade [15, 50, 55],
streaming [17], and adding transitions [5].
Story synthesis methods such as [20, 26, 28, 29, 31, 33]
generate sequences of images or videos corresponding to
individual sentences in a text story. For example, Craft [14]
generates videos of complex scenes through retrieval, and
StoryDiffusion [56] uses diffusion to improve the smooth-
ness of transitions between frames. While related to text-
to-video generation, story synthesis methods usually need
additional components in their pipeline to maintain coher-
ence across scenes, which are not processed end-to-end.

6. Future Work

We outline several promising directions for future work.
Faster implementation. Our current TTT-MLP kernel is
bottlenecked by register spills and suboptimal ordering of
asynchronous instructions. Efficiency could probably be
further improved by minimizing register pressure and de-
veloping a more compiler-aware implementation of asyn-
chronous operations.
Better integration. Using bi-direction and learned gates is
only one possible strategy for integrating TTT layers into
a pre-trained model. Better strategies should further im-
prove generation quality and accelerate fine-tuning. Other
video generation backbones, such as autoregressive models,
might require different integration strategies.
Longer videos with larger hidden states. Our approach
can potentially be extended to generate much longer videos
with linear complexity. The key to achieving that goal, we
believe, is to instantiate the hidden states as much larger
neural networks than our two-layer MLP. For example, f
itself can be a Transformer.
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fast, and adorable ai kernels. In ICLR, 2025. 1

[43] Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram,
Genghan Zhang, Yann Dubois, Xinlei Chen, Xiaolong Wang,
Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin.
Learning to (learn at test time): Rnns with expressive hidden
states. arXiv preprint arXiv:2407.04620, 2024. 2, 3, 5, 6, 9,
1

[44] The Movie Gen team. Movie gen: A cast of media founda-
tion models. arXiv preprint arXiv:2410.13720, 2024. 2, 6,
8, 10

11



[45] Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kin-
dermans, Hernan Moraldo, Han Zhang, Mohammad Taghi
Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan.
Phenaki: Variable length video generation from open domain
textual description. In ICLR, 2023. 10

[46] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre-Antoine Manzagol. Extracting and composing robust
features with denoising autoencoders. In ICML, 2008. 3

[47] Hongjie Wang, Chih-Yao Ma, Yen-Cheng Liu, Ji Hou, Tao
Xu, Jialiang Wang, Felix Juefei-Xu, Yaqiao Luo, Peizhao
Zhang, Tingbo Hou, Peter Vajda, Niraj K. Jha, and Xiao-
liang Dai. Lingen: Towards high-resolution minute-length
text-to-video generation with linear computational complex-
ity, 2024. 2

[48] Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-
time regression: a unifying framework for designing se-
quence models with associative memory. arXiv preprint
arXiv:2501.12352, 2025. 9

[49] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In ICCVW, 2021. 5

[50] Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou,
Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo Yu,
Peiqing Yang, et al. Lavie: High-quality video generation
with cascaded latent diffusion models. IJCV, 2024. 10

[51] Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang,
Prajjwal Bhargava, Rui Hou, Louis Martin, Rashi Rungta,
Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective
long-context scaling of foundation models. In NAACL, 2024.
5

[52] Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and
Yoon Kim. Parallelizing linear transformers with the delta
rule over sequence length. In NeurIPS, 2024. 6, 9

[53] Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta
networks: Improving mamba2 with delta rule. In ICLR,
2025. 2, 6

[54] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. In ICLR, 2025.
2, 10, 1

[55] Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng Wang,
Xiaodong Wang, Minheng Ni, Zhengyuan Yang, Linjie Li,
Shuguang Liu, Fan Yang, et al. Nuwa-xl: Diffusion over
diffusion for extremely long video generation. arXiv preprint
arXiv:2303.12346, 2023. 10

[56] Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi
Feng, and Qibin Hou. Storydiffusion: Consistent self-
attention for long-range image and video generation. In
NeurIPS, 2024. 10

12



Video len. Ctx. len Trainable parameters Learning rate Schedule Steps

3 sec 18048 TTT / Pre-trained Params 1× 10−4 / 1× 10−5 Cosine / Constant 5000

9 sec 51456 TTT + Local Attn (QKVO) 1× 10−5 Constant 5000

18 sec 99894 TTT + Local Attn (QKVO) 1× 10−5 Constant 1000

30 sec 168320 TTT + Local Attn (QKVO) 1× 10−5 Constant 500

63 sec 341550 TTT + Local Attn (QKVO) 1× 10−5 Constant 250

Table 2. Hyper-parameters for multi-stage fine-tuning. First, the entire pre-trained model is fine-tuned on 3-second segments of Tom and
Jerry, with higher learning rates assigned to the newly introduced TTT layers and gates. Then, only TTT layers, gates, and self-attention
parameters are fine-tuned at reduced learning rates.

Text following Motion naturalness Aesthetics Temporal consistency Average

Local Attention 965 972 969 944 962

TTT-Linear 1003 995 1007 1001 1001

Mamba 2 1023 987 1008 1004 1005

Gated DeltaNet 1020 1039 1044 1026 1032
SWA 995 1004 993 980 993

TTT-MLP 994 1002 1002 1019 1004

Table 3. Human evaluation results for 18-second videos, discussed in Subsection 4.3 and 4.4.

A. Experiment Details

Diffusion schedule. Following CogVideoX [54], we fine-
tune our model using v-prediction [34], which includes
a diffusion noise schedule with 1000 steps and Zero-
SNR [27] enforced at the final step.

Training configurations. We use the following hyper-
parameters for all stages of training:

• Optimizer: AdamW with (β1, β2) = (0.9, 0.95)

• Learning Rate: Linear warmup over 2% of training steps
• Batch Size: 64
• Gradient Clipping: 0.1
• Weight Decay: 10−4 applied to all params except biases

and normalization layers
• VAE Scale Factor: 1.0
• Dropout: Zero-out text prompt with probability 0.1
• Precision: Mixed Precision with PyTorch FSDP2

TTT configurations. A key hyperparameter for TTT layers
is the inner-loop learning rate η, which we set η = 1.0 for
TTT-Linear and η = 0.1 for TTT-MLP.

Sampling schedule. We follow the DDIM sampler [41]
with 50 steps, applying dynamic classifier-free guidance
(CFG) [18] that increases CFG magnitude from 1 to 4 and
utilizing negative prompts to further enhance video quality.

B. On-Chip Tensor Parallel Details
We use ThunderKittens [42] to implement the TTT-MLP
kernel, described in Subsection 3.5.

Hidden state sharding. We follow the standard strategy
for Tensor Parallel, sharding the first layer column-wise and
the second layer row-wise. As the GeLU non-linearity is
elementwise, the forward pass of the TTT-layer requires a
single reduction for computing the inner loss used to update
the hidden state.
Further latency optimizations. We incorporate several
techniques from FlashAttention-3 [38] to further reduce I/O
latency on NVIDIA Hopper GPUs. In particular, we imple-
ment a multi-stage pipelining scheme that asynchronously
prefetches future mini-batches from HBM, overlapping data
transfers with computation on the current mini-batch. This
approach, known as producer-consumer asynchrony, in-
volves dedicating specialized warpgroups to either data
loading (producer) or computation (consumer).
Gradient checkpointing. We integrate gradient check-
pointing along the sequence dimension [43] directly into
our fused kernel. To reduce I/O-induced stalls and CUDA
thread workloads, we use the Tensor Memory Accelerator
(TMA) to perform asynchronous memory stores.
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Format 2
Segment 1-2: Tom walks into the kitchen carrying an apple pie. He sits at the table and begins eating.

Segment 3-5: The viewpoint shifts behind the countertop, revealing Jerry hiding behind a salt shaker. Jerry steps out,
watches Tom eating the pie, and eagerly rubs his tummy. He then darts off-screen to the right.

Segment 6-8: Outside the house, Jerry approaches the front door, jumps to press the doorbell, and quickly runs away.

The story continues...

Format 1

Tom is happily eating an apple pie at the kitchen table. Jerry looks longingly wishing he had some. Jerry goes outside
the front door of the house and rings the doorbell. While Tom comes to open the door, Jerry runs around the back to the
kitchen. Jerry steals Tom's apple pie. Jerry runs to his mouse hole carrying the pie, while Tom is chasing him. Just as
Tom is about to catch Jerry, Jerry makes it through the mouse hole and Tom slams into the wall.

Format 3

<start_scene>The kitchen has soft yellow walls, white cabinets, and a window with red-and-white checkered curtains
letting in gentle sunlight. In the middle, there's a round wooden table with matching chairs, sitting on a clean white-tiled
floor. Tom, the blue-gray cat, walks in from the left holding a warm, golden-brown pie on a shiny silver tray. He moves
calmly across the room toward the table, carefully places the pie down, pulls out a chair, and sits comfortably. The
camera smoothly follows Tom from left to right, clearly showing each of his movements.

The kitchen has soft yellow walls, white cabinets, and a window with red-and-white checkered curtains letting in gentle
sunlight. In the middle, there's a round wooden table with matching chairs, sitting on a clean white-tiled floor. Tom, the
blue-gray cat, sits comfortably at the table with the golden-brown pie resting on its shiny silver tray directly in front of
him. He carefully uses his paw to pick up a slice from the tray, lifts it toward his mouth, and takes a large bite. The
camera slowly moves closer, clearly showing Tom enjoying his pie as crumbs lightly fall onto the table.<end_scene>

<start_scene>The kitchen has soft yellow walls, white cabinets, and a window with red-and-white checkered curtains
letting in gentle sunlight. The cabinets have white countertops, on which a tall glass salt shaker is sitting. In the
background, Tom, the blue-gray cat, sits at the round wooden table, eating the golden-brown pie. Jerry, the brown
mouse, stands on the white countertop, hidden behind the salt shaker. Jerry glances around briefly, then steps out from
behind the salt shaker. The camera captures Jerry as he emerges from behind the salt shaker and stands on the
countertop.

The kitchen has soft yellow walls, white cabinets, and a window with red-and-white checkered curtains letting in gentle
sunlight. The cabinets have white countertops, on which a tall glass salt shaker is sitting. In the background, Tom, the
blue-gray cat, sits at the round wooden table, eating the golden-brown pie. Jerry, the brown mouse, stands on top of the
countertop next to the salt shaker. Jerry rubs his stomach with his paws and looks at Tom, the blue-gray cat. The camera
remains in position slightly to the side of Jerry, capturing his hungry expression.

The kitchen has soft yellow walls, white cabinets, and a window with red-and-white checkered curtains letting in gentle
sunlight. The cabinets have white countertops, on which a tall glass salt shaker is sitting. In the background, Tom, the
blue-gray cat, sits at the round wooden table, eating the golden-brown pie. Jerry, the brown mouse, stands on top of the
countertop next to the salt shaker. Jerry gives his belly a final rub, then turns to the left and quickly begins running along
the countertop toward the right side of the scene. The camera captures Jerry as he disappears off-screen.<end_scene>

<start_scene>The front of the house has light blue walls, a white wooden front door, a small round white doorbell button
beside it, and a small porch with steps leading down to a neat green lawn. Bright flowers in red and yellow line the
walkway, and sunlight warmly fills the area. Jerry, the brown mouse, calmly walks up onto the porch from the right side,
moving toward the front door and doorbell at the center of the scene. The camera smoothly tracks Jerry's steps, capturing
clearly as he crosses the porch and comes to a gentle stop near the steps, glancing cautiously upward at the doorbell.

The story continues...

Figure 8. Illustration of the three prompt formats discussed in Subsection 3.2: (1) a short summary of the plot, (2) sentence-level descrip-
tions of the segments, and (3) a detailed storyboard.
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