
One-Minute Video Generation with Test-Time Training

Karan Dalal*∗4 Daniel Koceja∗2 Gashon Hussein∗2 Jiarui Xu∗1,3 Yue Zhao††5 Youjin Song†2

Shihao Han1 Ka Chun Cheung1 Jan Kautz1 Carlos Guestrin2 Tatsunori Hashimoto2 Sanmi Koyejo2

Yejin Choi1 Yu Sun1,2 Xiaolong Wang1,3

1NVIDIA 2Stanford University 3UCSD 4UC Berkeley 5UT Austin

00:00 01:0000:20 00:40

On a sunny morning in New York, Tom, a blue-gray cat carrying a briefcase, arrives at his office in the World Trade Center. As he settles in, his computer suddenly shuts down – Jerry, a
mischievous brown mouse, has chewed the cable. A chase ensues, ending with Tom crashing into the wall as Jerry escapes into his mousehole. Determined, Tom bursts through an office
door, accidentally interrupting a meeting led by Spike, an irritated bulldog, who angrily sends him away. Safe in his cozy mousehole, Jerry laughs at the chaos.

Jerry happily eats cheese in a tidy kitchen until Tom playfully takes it away, teasing him. Annoyed, Jerry packs his belongings and leaves home, dragging a small suitcase behind him. Later,
Tom notices Jerry's absence, feels sad, and follows Jerry’s tiny footprints all the way to San Francisco. Jerry sits disheartened in an alleyway, where Tom finds him, gently offering cheese as
an apology. Jerry forgives Tom, accepts the cheese, and the two return home together, their friendship restored.

Figure 1. TTT layers enable a pre-trained Diffusion Transformer to generate one-minute videos from text storyboards. We use Tom and
Jerry cartoons as a proof of concept. The videos tell complex stories with coherent scenes composed of dynamic motion. Every video is
produced directly by the model in a single shot, without editing, stitching, or post-processing. Every story is newly created.

Abstract

Transformers today still struggle to generate one-minute
videos because self-attention layers are inefficient for long
context. Alternatives such as Mamba layers struggle with
complex multi-scene stories because their hidden states are
less expressive. We experiment with Test-Time Training
(TTT) layers, whose hidden states themselves can be neu-
ral networks, therefore more expressive. Adding TTT lay-
ers into a pre-trained Transformer enables it to generate
one-minute videos from text storyboards. For proof of con-
cept, we curate a dataset based on Tom and Jerry cartoons.
Compared to baselines such as Mamba 2, Gated DeltaNet,
and sliding-window attention layers, TTT layers generate
much more coherent videos that tell complex stories, lead-

*Joint first authors. † Joint second authors.
Accepted to The IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR) 2025

ing by 34 Elo points in a human evaluation of 100 videos
per method. Although promising, results still contain arti-
facts, likely due to the limited capability of the pre-trained
5B model. The efficiency of our implementation can also
be improved. We have only experimented with one-minute
videos due to resource constraints, but the approach can be
extended to longer videos and more complex stories.

Sample videos, code and annotations are available at:
https://test-time-training.github.io/video-dit

1. Introduction
Despite the remarkable progress in visual and physical real-
ism, state-of-the-art video Transformers are still generating
mostly short clips of single scenes without complex stories.
At the time of writing (March 2025), the maximum length
of public APIs for video generation is 20 seconds for Sora
(OpenAI), 16 seconds for MovieGen (Meta), 10 for Ray 2

1

https://test-time-training.github.io/video-dit

Figure 2. All RNN layers can be expressed as a hidden state that transitions according to an update rule. The key idea in [43] is to make
the hidden state itself a modelf with weightsW , and the update rule a gradient step on the self-supervised loss`. Therefore, updating
the hidden state on a test sequence is equivalent to training the modelf at test time. This process, known as Test-Time Training (TTT), is
programmed into TTT layers. Figure and caption taken from [43].

(Luma), and 8 for Veo 2 (Google). None of these APIs can
autonomously generate complex multi-scene stories.

A fundamental challenge behind these technical limi-
tations is long context, because the cost of self-attention
layers in Transformers increases quadratically with context
length. This challenge is especially acute for video gener-
ation with dynamic motion, whose context cannot be eas-
ily compressed by a tokenizer. Using a standard tokenizer,
each of our one-minute videos requires over 300k tokens in
context. With self-attention, generating a one-minute video
would have taken11� longer than generating 20 videos of
3 seconds each, and training would have taken12� longer.

To address this challenge, recent work on video gener-
ation has investigated RNN layers as an ef�cient alterna-
tive to self-attention, because their cost increases linearly
with context length [47]. Modern RNN layers, especially
variants of linear attention [23, 37] such as Mamba [8, 12]
and DeltaNet [35, 53], have shown impressive results for
natural language tasks. However, we have yet to see long
videos with complex stories or dynamic motion generated
by RNNs. Videos (link) in [47] are high resolution and
one-minute long, but contain only single scenes and slow
motion, let alone complex stories.

We believe that these RNN layers generate less complex
videos because their hidden states are less expressive. RNN
layers can only store past tokens into a hidden state of �xed
size, which is only a matrix for linear attention variants such
as Mamba and DeltaNet. It is inherently challenging to
compress hundreds of thousands of vectors into a matrix
with only thousands in rank. As a consequence, these RNN
layers struggle to remember the deep relationships between
distant tokens.

We experiment with an alternative class of RNN layers
whose hidden states themselves can be neural networks.
Speci�cally, we use two-layer MLPs with 2� more hid-
den cells and richer nonlinearities than the linear (matrix)
hidden states in linear attention variants. Since the neural
network hidden states are updated by training even on test
sequences, these new layers are called Test-Time Training
(TTT) layers [43].

We start from a pre-trained Diffusion Transformer
(CogVideo-X 5B [19]) that could only generate 3-second
short clips at 16 fps (or 6 seconds at 8 fps). Then, we add
TTT layers initialized from scratch and �ne-tune this model
to generate one-minute videos from text storyboards. We
limit the self-attention layers to 3-second segments so their
cost stays manageable. With only preliminary systems op-
timization, our training run takes the equivalent of 50 hours
on 256 H100s.

We curate a text-to-video dataset based on� 7 hours of
Tom and Jerrycartoons with human-annotated storyboards.
We intentionally limit our scope to this speci�c domain for
fast research iteration. As a proof-of-concept, our dataset
emphasizes complex, multi-scene, and long-range stories
with dynamic motion, where progress is still needed; it
has less emphasis on visual and physical realism, where re-
markable progress has already been made. We believe that
improvements in long-context capabilities for this speci�c
domain will transfer to general-purpose video generation.

Compared to strong baselines such as Mamba 2 [8],
Gated DeltaNet [53], and sliding-window attention layers,
TTT layers generate much more coherent videos that tell
complex stories with dynamic motion, leading by 34 Elo
points in a human evaluation of 100 videos per method. For
context, GPT-4o scores 29 Elo points over GPT-4 Turbo in
LMSys Chatbot Arena [6].

Sample videos, code and annotations are available at:
https://test-time-training.github.io/video-dit

2. Test-Time Training Layers

Following standard practice [44, 54], each video is pre-
processed into a sequence ofT tokens, whereT is deter-
mined by its duration and resolution. This section reviews
Test-Time Training (TTT) layers for general sequence mod-
eling, using some of the exposition in Section 2 of [43]. We
�rst discuss how to process general input sequences in a
causal manner (chronological order). Section 3 discusses
how to use RNN layers in a non-causal backbone by invok-
ing them in opposite directions.

2

https://lineargen.github.io/

2.1. TTT as Updating a Hidden State

All RNN layers compress historical context in a hidden state
of �xed size. This compression has two consequences. On
one hand, mapping an input tokenx t to output tokenzt is
ef�cient, because both the update rule and output rule take
constant time per token. On the other hand, an RNN layer's
ability to remember long context is limited by the amount
of information its hidden state can store. The goal of [43]
is to design RNN layers with expressive hidden states that
can compress massive context. As an inspiration, they ob-
serve that self-supervised learning can compress a massive
training set into the weights of a machine learning model.

The key idea in [43] is to use self-supervised learning
to compress the historical contextx1; : : : ; x t into a hidden
stateWt , by making the context an unlabeled dataset and
the hidden state the weights of a machine learning modelf .
The update rule, illustrated in Figure 2, is a step of gradient
descent on some self-supervised loss`:

Wt = Wt � 1 � � r `(Wt � 1; x t); (1)

with learning rate� . Intuitively, the output token is just the
prediction onx t , made byf with the updated weightsWt :

zt = f (x t ; Wt): (2)

One choice of̀ is reconstructingx t itself. To make the
learning problem nontrivial, one can �rst processx t into a
corrupted input~x t (see Subsection 2.2), then optimize:

`(W ; x t) = kf (~x t ; W) � x t k2: (3)

Similar to denoising autoencoders [46],f needs to discover
the correlations between dimensions ofx t in order to recon-
struct it from partial information~x t .

As with other RNN layers and self-attention, this algo-
rithm that maps an input sequencex1; : : : ; xT to output se-
quencez1; : : : ; zT can be programmed into the forward pass
of a sequence modeling layer. Even at test time, the layer
still trains a different sequence of weightsW1; : : : ; WT

for every input sequence. Therefore, it is calledTest-Time
Training (TTT) layer.

Conceptually, calling backward onr ` means taking gra-
dients of gradients – a well-explored technique in meta-
learning. TTT layers have the same interface as RNN layers
and self-attention, therefore can be replaced in any larger
network architecture. [43] refers to training the larger net-
work as theouter loop, and trainingW within each TTT
layer as theinner loop.

2.2. Learning a Self­Supervised Task for TTT

Arguably, the most important part of TTT is the self-
supervised task speci�ed bỳ. Instead of handcrafting a
self-supervised task from human priors, [43] takes a more

end-to-end approach, learning it as part of the outer loop.
Starting from the naive reconstruction task in Equation 3,
they use a low-rank projection~x t = � K x t , where� K is a
matrix that is learnable in the outer loop.

Moreover, perhaps not all the information inx t is worth
remembering, so the reconstruction label can also be a low-
rank projection� V x t instead ofx t . In summary, the self-
supervised loss in [43] is:

`(W ; x t) = kf (� K x t ; W) � � V x t k2: (4)

Lastly, since� K x t has fewer dimensions thanx t , [43] can
no longer use the output rule in Equation 2. So they make
another projection� Q x t , and change the output rule to:

zt = f (� Q x t ; Wt) : (5)

Note that in the inner loop, onlyW is optimized, therefore
written as an argument of`; the � s are “hyper-parameters”
of this inner-loop loss function.� K ; � V ; � Q are optimized
in the outer loop, analogous to the Query, Key, and Value
parameters of self-attention.

2.3. TTT­MLP Instantiation

Following [43], we instantiate the inner-loop modelf as a
wrapper aroundf MLP: a two-layer MLP similar to those in
Transformers. Speci�cally, the hidden dimension is4� the
input dimension, followed by a GELU activation [16]. For
better stability during TTT,f always contains a Layer Norm
and residual connection. That is,

f (x) = x + LN(f MLP(x)) :

A TTT layer with this f is called TTT-MLP, which is the
default instantiation throughout this paper. In Section 4 we
also instantiate TTT-Linear (thef above wrapping around a
linear model) as a baseline.

3. Approach

At a high level, our approach simply adds TTT layers to a
pre-trained Diffusion Transformer and �ne-tunes it on long
videos with text annotations. At a practical level, making
this approach work involves many design choices.

3.1. Architecture

Pre-trained Diffusion Transformer. Our approach of
adding TTT layers then �ne-tuning can, in principle, work
with any backbone architecture. We choose Diffusion
Transformers [32] for our initial demonstration because it
is the most popular architecture for video generation. Since
the cost of pre-training a Diffusion Transformer on videos
is prohibitive, we start from a pre-trained checkpoint called
CogVideo-X 5B [19].

3

Figure 3. Overview of our approach.Left : Our modi�ed architecture adds a TTT layer with a learnable gate after each attention layer. See
Subsection 3.1.Right: Our overall pipeline creates input sequences composed of 3-second segments. This structure enables us to apply
self-attention layers locally over segments and TTT layers globally over the entire sequence. See Subsection 3.2.

Gating. Given an input sequenceX = (x1; : : : ; xT) where
each tokenx t 2 Rd, a TTT layer produces an output se-
quenceZ = (z1; : : : ; zT) = TTT(X). Eachzt 2 Rd fol-
lows the recurrence described by Equations 1, 4 and 5 in
Section 2. Naively inserting TTT layers into a pre-trained
network would dramatically worsen its predictions at the
beginning of �ne-tuning, when the TTT layers are randomly
initialized. To avoid this degradation, we gateTTTwith a
learned vector� 2 Rd following standard practice [1]:

gate(TTT; X ; �) = tanh(�)
 TTT(X) + X; (6)

wheretanh(�) 2 (� 1; 1)d is multiplied element-wise with
eachzt in Z = TTT(X). We initialize all values in� to
0:1, so the values intanh(�) are close to 0 (� 0:1) at the
beginning of �ne-tuning. This initialization of� allowsTTT
to still contribute togate(TTT; X ; �) without signi�cantly
overwritingX .
Bi-direction. Diffusion models, including CogVideo-X,
are non-causal, meaning that an output tokenzt can con-
dition on all of x1; : : : ; xT instead of only the past tokens
x1; : : : ; x t . To use TTT layers in a non-causal manner,
we apply a standard trick called bi-direction [30]. Given
an operatorrev(X) = (xT ; : : : ; x1) that reversesX =
(x1; : : : ; xT) in time, we de�ne

TTT0(X) = rev(TTT(rev(X))) : (7)

Sincerev is applied twice,TTT0(X) is still in chronological
order. But the TTT layer inside it now scans throughX in
reverse-chronological order.
Modi�ed architecture. Standard Transformers, includ-
ing CogVideo-X, contain interleaving sequence modeling
blocks and MLP blocks. Speci�cally, a standard sequence
modeling block takes an input sequenceX and produces

X 0 = self attn (LN(X)) (8)

Y = X 0+ X; (9)

whereLNis Layer Norm1 andX 0+ X forms a residual con-
nection. We only modify the sequence modeling blocks,
leaving everything else in the architecture unchanged. Each
modi�ed block, illustrated in the left panel of Figure 3, con-
tinues from theX 0 in Equation 8 and produces

Z = gate(TTT; X 0; �); (10)

Z 0 = gate(TTT0; Z ; �); (11)

Y = Z 0+ X: (12)

Note thatTTT0only makes another call toTTT, so they share
the same underlying parameters� K ; � V ; � Q . But for gating,
Equation 10 and 11 use different parameters� and� .

3.2. Overall Pipeline

In this subsection, we discuss how to create the input se-
quence of tokens to our architecture and how each sequence
is processed in segments. Except for the �rst two text for-
mats in the upcoming discussion, everything applies to both
�ne-tuning and inference. Our pipeline is illustrated in the
right panel of Figure 3.
Scenes and segments.We structure our videos to contain
multiple scenes,2 and each scene contains one or more 3-
secondsegments. We use a 3-second segment as the atomic
unit of text-to-video pairing for three reasons:
• The maximum length of generation for the original pre-

trained CogVideo-X is 3 seconds.
• The length of most scenes in theTom and Jerryepisodes

is at least 3 seconds.
• Building a dataset with multiple stages (Subsection 3.3)

is most convenient given 3-second segments.
Formats of text prompts. At inference time, a user can
write the text prompt for a long video in any of the three

1Diffusion Transformers such as CogVideo-X use adaptive LN [32].
2A scene is loosely de�ned as “a part of a �lm in which the action

happens in one place or is of one particular type.” (Oxford Dictionary)

4

formats listed below in the order of increasing detail. See
Figure 8 in Appendix for examples of each format.
• Format 1: A short summary of the plot in 5-8 sentences.

Some of the examples are shown in Figure 1.
• Format 2: A more detailed plot in roughly 20 sentences,

with each sentence roughly corresponding to a 3-second
segment. Sentences can be labeled as belonging to certain
scenes or groups of scenes, but these labels will be treated
only as suggestions.

• Format 3: A storyboard. Each 3-second segment is
described by a paragraph of 3-5 sentences, containing
details such as background colors and camera move-
ments. Groups of one or more paragraphs are strictly en-
forced as belonging to certain scenes with the keywords
<scene start> and<scene end>.

The actual input to our text tokenizer is always in Format 3
during both �ne-tuning and inference. Conversion between
the formats is performed by Claude 3.7 Sonnet in the order
of 1 ! 2 ! 3.3 For �ne-tuning, our human annotations are
already in Format 3, as discussed in Subsection 3.3.
From text to sequences.After the original CogVideo-X to-
kenizes the input text for each video, it concatenates the text
tokens with noisy video tokens to form the input sequence
to the Transformer. To generate a long video, we apply the
same procedure independently for each 3-second segment.
Speci�cally, given a storyboard in Format 3 withn para-
graphs, we �rst producen sequence segments, each con-
taining text tokens extracted from the corresponding para-
graph followed by video tokens. Then we concatenate all
n sequence segments together to form the input sequence,
which now has interleaved text and video tokens.
Local attention, global TTT. CogVideo-X uses self-
attention layers to process the entire input sequence globally
for each video of maximum length 3 seconds, but global
attention becomes inef�cient for long videos. To avoid in-
creasing the context length of self-attention layers, we make
them local to each 3-second segment, attending to each of
the n sequence segments independently.4 The TTT layers
process the entire input sequence globally because they are
ef�cient in long context.

3.3. Fine­Tuning Recipe and Dataset

Multi-stage context extension. Following standard prac-
tice for LLMs [51], we extend the context length of our
modi�ed architecture to one minute in �ve stages. First,
we �ne-tune the entire pre-trained model on 3-second seg-
ments ofTom and Jerryto adapt it to this domain. New
parameters (speci�cally those in TTT layers and gates) are

3We observe that converting from Format 1 directly to Format 3 results
in worse ability to follow the style of the human annotations in Format 3
in the �ne-tuning dataset.

4As an artifact of our pre-processing step, the sequence segments ac-
tually have an overlap of 1 latent frame (1350 tokens).

assigned a higher learning rate during this stage. Over the
next four stages, we �ne-tune on videos of 9, 18, 30, and
eventually 63 seconds. To avoid forgetting too much of the
world knowledge from pre-training, we only �ne-tune the
TTT layers, gates, and self-attention layers, using a lower
learning rate during these four stages. See Appendix A for
the detailed recipe.
Super-resolution on original videos. We start with 81
episodes ofTom and Jerryreleased between 1940 and 1948.
Each episode is about 5 minutes, adding up to about 7 hours
for all episodes. The original videos vary in resolution,
which is uniformly poor by modern standards. We run a
video super-resolution model [49] on the original videos,
producing visually enhanced videos with shared resolution
of 720� 480for our dataset.
Multi-stage dataset. Following the structure discussed in
Subsection 3.2, we �rst have human annotators break down
each episode into scenes, then extract 3-second segments
from each scene. Next we have human annotators write
a detailed paragraph for each 3-second segment.5 Stage 1
�ne-tunes directly on these segments. To create data for the
last four stages, we concatenate contiguous 3-second seg-
ments into videos of 9, 18, 30 and 63 seconds together with
their text annotations. Scene boundaries are marked by the
same keywords in Subsection 3.2. As a result, annotations
for all training videos are in Format 3.

3.4. Parallelization for Non­Causal Sequences

The update rule discussed in Section 2 cannot be naively
parallelized across tokens in a sequence, since computing
Wt requiresr `(Wt � 1; x t), which in turn requiresWt � 1.
To enable parallelization, we updateW on b tokens at a
time, which [43] calls an inner-loop mini-batch. Through-
out this paper, we setb = 64.

Concretely, for mini-batchi = 1 ; : : : ; T=b(assumingT
is an integer multiple ofb),

Wib = W(i � 1)b �
�
b

ibX

t =(i � 1)b+1

r `
�
W(i � 1)b; x t

�
: (13)

Because the sequence is non-causal, we then useWib to
produce the output tokens for all timesteps in mini-batchi :

zt = f (Wib ; x t); for t = (i � 1)b+ 1 ; : : : ; ib: (14)

Note thatW(i � 1)b+1 ; : : : ; Wib � 1 are no longer needed.
After this modi�cation, f can process an (inner-loop)

mini-batch of tokens in parallel, similar to how a regular
MLP processes an (outer-loop) mini-batch of training data.
As a side bene�t, we observe that averaging gradients across
tokens reduces variance and stabilizes each update toW .

5Each paragraph includes 1–2 sentences describing the background,
1–2 sentences describing the characters, and 2 sentences describing actions
and camera movements. On average, each paragraph contains 98 words,
which corresponds to 132 tokens.

5

Figure 4. On-chip Tensor Parallel, discussed in Subsection 3.5.Left: To reduce the memory required on each SM for TTT-MLP, we shard
the hidden stateW (1) andW (2) across SMs, transferring them between HBM and SMEM only during initial loading and �nal output.
Right: We update the hidden state entirely on-chip and use the DSMEM feature on the NVIDIA Hopper GPU architecture toAllReduce
intermediate activations among SMs.

3.5. On­Chip Tensor Parallel

Implementing TTT-MLP ef�ciently for GPUs requires spe-
cial designs to take advantage of their memory hierarchy. A
chip on a GPU is called a Streaming Multiprocessor (SM),
analogous to a core on a CPU. All SMs on a GPU share
a relatively slow but large global memory called HBM,
then each SM has a fast but small on-chip memory called
SMEM. Frequent data transfers between the SMEMs and
HBM on a GPU can signi�cantly hurt overall ef�ciency.

Ef�cient implementations of Mamba and self-attention
layers (Flash Attention [9]) use kernel fusion to minimize
this kind of transfer. The high-level idea of these implemen-
tations is to load inputs and initial states into each SMEM,
perform computations entirely on-chip, and write only the
�nal outputs back to HBM. However, the hidden state for
TTT-MLP, namely the weightsW (1) andW (2) of the two-
layer MLP f , is too large to be stored in the SMEM of a
single SM (when combined with inputs and activations).

To reduce the memory required on each SM, we use Ten-
sor Parallelism [39] to shardW (1) andW (2) across SMs, as
shown in Figure 4. Similar to how large MLP layers can
be sharded and trained across the HBMs of multiple GPUs,
we apply the same idea now across the SMEMs of multiple
SMs, treating each SM as the analogy of a GPU. We use the
DSMEM feature on the NVIDIA Hopper GPU architecture
to implementAllReduce among SMs. More details of our
kernel are discussed in Appendix B.

Our implementation signi�cantly improves ef�ciency,
since hidden states and activations are now read from and
written to HBMs only during initial loading and �nal out-
put. As a general principle, if a model architecturef can
be sharded with standard Tensor Parallelism across GPUs,
then the same sharding strategy can be applied across SMs
whenf is used as the hidden state.

4. Evaluation

We perform human evaluation on a multi-axis benchmark
for TTT-MLP and �ve baselines, all with linear complexity:
local attention, TTT-Linear, Mamba 2, Gated DeltaNet, and
sliding window attention layers.

4.1. Baselines

Except for local attention, all baselines are added to the
same pre-trained CogVideo-X 5B using the approach in
Subection 3.1; their modi�ed architectures all have 7.2B
parameters. All baselines use the same �ne-tuning recipe in
Subsection 3.3 and Appendix A. Next we discuss the base-
lines in detail.
• Local attention: No modi�cation to the original archi-

tecture, which performs self-attention on each 3-second
segment independently.

• TTT-Linear [43]: A TTT layer that instantiatesf (x) =
x + LN(f Linear (x)) , wheref Linear is a linear model.

• Mamba 2 [8]: A modern RNN layer with a matrix hidden
state, which is� 4� larger than the hidden state in TTT-
Linear but� 2� smaller than that in TTT-MLP.

• Gated DeltaNet[53]: An extension of DeltaNet [52] and
Mamba 2 with an improved update rule.

• Sliding-window attention [3]: Self-attention with a �xed
window of8192tokens (about 1.5 seconds of video).

4.2. Evaluation Axes and Protocol

From the six evaluation axes in MovieGen [44], we adopt
the four relevant to our domain for human evaluation.6

6Out of the six axes in MovieGen, we omit “realness” which does not
apply to cartoons. We also omit “motion completeness” which “measures
whether the output video contains enough motion”, because all videos in
our domain have highly dynamic motion. We adapt “frame consistency”
to “temporal consistency” to also include consistency across scenes.

6

Figure 5. Video frames comparing TTT-MLP against Gated DeltaNet and sliding-window attention, the leading baselines in our human evaluation. TTT-MLP demonstrates better
scene consistency by preserving details across transitions and better motion naturalness by accurately depicting complex actions.

7

	Introduction
	Test-Time Training Layers
	TTT as Updating a Hidden State
	Learning a Self-Supervised Task for TTT
	TTT-MLP Instantiation

	Approach
	Architecture
	Overall Pipeline
	Fine-Tuning Recipe and Dataset
	Parallelization for Non-Causal Sequences
	On-Chip Tensor Parallel

	Evaluation
	Baselines
	Evaluation Axes and Protocol
	Results
	Limitations

	Related Work
	Future Work
	Experiment Details
	On-Chip Tensor Parallel Details

